

Innovative photocatalysts integrated in flow photoreactor systems for direct CO_2 and H_2O conversion into solar fuels

Deliverable 1.2

Report on conditioning and CO₂ solubilization in water

Collaborative project within H2020-LC-SC3-2020-NZE-RES-CC Grant agreement No. 101022202 Start date of the project: 01/07/2021

Duration of the project: 48 months

Project partners:

LEITAT - NUIG - PKU - UBU - CHEM - SOCAR - ICIQ - FUNDITEC - UMICH - STRATA

Dissemination level: PU = Public, PP = Restricted to other programme participants (including the JU), RE = Restricted to a group specified by the consortium (including the JU), CO = Confidential, only for members of the consortium (including the JU)

² Nature of the deliverable: \mathbf{R} = Report, \mathbf{P} = Prototype, \mathbf{D} = Demonstrator, \mathbf{O} = Other

³ Creation, modification, final version for evaluation, revised version following evaluation, final

 $\mathsf{NEFERTITI}$ – $\mathsf{D1.2}$ – Report on conditioning and CO_2 solubilization in water

Document history

Version	Issue date	Author	Partner	e-mail address	Comments ³
1	01/03/2022	Oriol Angurell	LEITAT	oangurell@leitat.org	Creation
2	16/03/2022	Mikel Tellechea	LEITAT	mtellechea@leitat.org	Initial draft
3	22/03/2022	Roberto Gonzalez	NUIG	roberto.gonzalez@nuig alway.ie	Modifications
4	28/03/2022 31/03/2022	Oriol Angurell Kerstin Steidle	LEITAT	oangurell@leitat.org ksteidle@leitat.org	Final

CONTENTS

1	Introduction1			
2	Experin	nental work	. 1	
	2.1 Sol	ubility experiments in batch	2	
	2.1.1	General procedure	2	
	2.1.2	Optimization of the process		
	2.1.3	Temperature and pressure effect	5	
	2.1.4	Ionic liquids	7	
	2.1.5	Salting in effect	7	
	2.2 Sol	ubility experiments in flow	9	
	2.2.1	General procedure	9	
	2.2.2	Pressurizing CO ₂ in flow reactors	10	
	2.2.3	CO2 nanobubbles	11	
3	Conclu	sions	12	

LIST OF TABLES

Table 1. Solubility data at different temperatures	6
Table 2. Solubility data at different pressures	6
Table 3. Solubility data at optimal conditions	6
Table 4. Solubility data with different IL concentration	7
Table 5. Solubility data with different NaCl concentration	8
Table 6. Solubility data with different KHCO3 concentration	8
Table 7. Solubility experiments at different pressures in flow	11
Table 8. Solubility experiments at different pressures in flow using a biphasic system	11
Table 9. Theoretical CO ₂ solubilities using nanobubbles \dots	12

LIST OF FIGURES

Figure 1. Carbonate titration process	2
Figure 2. Metrohm automatic titrator	3
Figure 3. CO_2 concentration vs time	3
Figure 4. Sodium hydroxide reacting time	4
Figure 5. Sample collecting	5
Figure 6. Literature solubility data. ⁵	5
Figure 7. CO ₂ an HCO ₃ ⁻ equilibrium	8
Figure 8. Flow system for solubility experiments	9
Figure 9. Ceramic membrane	10
Figure 10. Equation to calculate solar-to-CO efficiency	. 12
Figure 11. Gas phase set-up used for the photocatalytic CO2 reduction.	13

1 Introduction

Photocatalytic CO₂ reduction has been intensely investigated since the beginning of the century. However, the CO₂ reduction photoefficiency into valuable chemicals is rather poor.¹ Despite the great efforts for increasing the solar-driven CO₂ conversion, there are still major drawbacks. One of its limitations consist in the low solubility of CO₂ in water (0,034 M at r.t.).²

This report is about the performed CO_2 solubility experiments in water stream using different techniques in order to achieve the proposed KPI, 5 % solar-to-CO efficiency which results in a 0.6 M CO₂ concentration. The strategies proposed to this end are:

- Solubilize the CO₂ in form of nanobubbles to increase its dissolution rate in water. The nanobubbles with controlled size, excellent stabilization and better solubilization in H₂O will be studied to increase the literature results.
- Use of near neutral pH values to increase the CO₂ solubility in water stream. At high pH values the CO₂ is converted to carbonate and becomes unreactive and at low values, the H₂ transformation becomes predominant.
- Add salts to increase the CO₂ solubility due to the salting-in effect.
- Pressurize in both batch and flow condition. In gas solutions, an increase of pressure involves an increase of solubility.
- Use porous membranes to facilitate the permeation the CO_2 in the water stream.

2 Experimental work

The mentioned parameters and some others were applied for solubility experiments in batch first. Afterwards, the parameters that resulted in significant changes were applied in flow.

All the experiments have been performed using MiliQ water and a cylinder of commercial CO_2 .

¹ Dimitrijevic, N. M., Vijayan, B. K., Poluektov, O. G., Rajh, T., Gray, K. A., He, H., & Zapol, P. (2011). Journal of the American Chemical Society, 133(11), 3964-3971.

² Parvanian, A. M., Sadeghi, N., Rafiee, A., Shearer, C. J., & Jafarian, M. (2021). Energies, 15(1), 63.

2.1 Solubility experiments in batch

As reported before, initial experiments were performed in batch to see general trends and gather information to apply later in continuous flow.

2.1.1 General procedure

MiliQ Water and CO_2 were mixed in batch using a high-pressure reactor. First, water was placed in the reactor and then it was closed. Later, CO_2 was bubbled up directly inside the reactor through the injector until the desired pressure was obtained. Samples were collected measuring the extracted volume and subsequently capturing the solubilized CO_2 by adding an excess of sodium hydroxide solution. The mixture was then stirred overnight.

A titration method to determine the amount of solubilized CO_2 was developed based in the literature.³ Therefore, the CO_2 was trapped first as carbonate anion through sodium hydroxide quenching, and then the carbonate was titrated with HCl.

Figure 1. Carbonate titration process⁴

³ Crossno, S. K., Kalbus, L. H., & Kalbus, G. E. (1996). Determinations of Carbon Dioxide by Titration: New Experiments for General, Physical, and Quantitative Analysis Courses. Journal of Chemical Education, 73(2), 175.

⁴ Zosel, J; Oelßner, W; Decker, M; Gerlach, G; Guth, U (2011). The measurement of dissolved and gaseous carbon dioxide concentration. Measurement Science and Technology, 22(7), 072001.

Specifically, the mixture was titrated with HCl 1 M. The titration started with the quenching of the remaining sodium hydroxide and the conversion of carbonate into bicarbonate until pH 8,2 using phenolphthalein as indicator. Furthermore, bicarbonate was titrated with methyl orange as indicator until pH 4,3. Finally, the concentration of CO_2 was equal to the amount of solved bicarbonate.

In order to avoid visual errors that could be generated by the indicators in the manual titration, an automatic titrator Metrohm 888 titrando (Figure 2) was used.

Figure 2. Metrohm automatic titrator

2.1.2 Optimization of the process

The residence time of CO_2 and water in the reactor was found irrelevant. Experiments from 15 minutes to 1 hour showed the same results (Figure 3) so, 15 minutes were considered enough for this process.

Figure 3. CO₂ concentration vs time

To ensure the complete capture of CO_2 as carbonate solution, the reaction time with the excess of NaOH was optimized. The mixture was stirred for two, four and six hours, overnight and for four days at room temperature. As seen in Figure 4, the results keep increasing with time, but overnight (20 h) was considered enough for the next tests.

Figure 4. Sodium hydroxide reacting time

For experiments with pressure, sample collection process was optimized to minimize the pressure loss during the quenching process. At first, the sample was collected in a cold tube to measure de volume and immediately was added to the NaOH solution (Figure 5). Using this method, most of the CO₂ that could be solved because of the pressure influence, was evaporated before got trapped by the NaOH due to the pressure drop.

To fix this problem, instead of collecting the sample in a tube, the sample was collected directly in a three-necked flask with NaOH inside. Two necks were sealed with empty balloons (Figure 5). When the sample was collected the system was quickly closed and the balloons absorbed the pressure of the mixture, keeping most of the CO_2 inside. The flask contained a known volume of NaOH mixture and after stirring the mixture overnight, the total volume was measured and titrated to determinate the amount of CO_2 in the original sample. Three samples were collected for each experiment to reduce the error, so an average result is shown in all the tables.

Figure 5. Sample collecting

2.1.3 Temperature and pressure effect

According to literature,⁵ lowering the temperature increases the solubility of CO_2 (Figure 6). Hereby, water was cooled down using an ice bath prior to the addition into the reactor. The sample was collected as reported in Figure 5.

Р	<i>T</i> (K)			
(bar)	273.15	303.15	333.15	
1	0.0693	0.0286	0.0137	
5	0.3368	0.1442	0.0803	
10	0.6463	0.2809	0.1602	
50		1.0811	0.6695	

Figure 6. Literature solubility data.⁵

As expected, lower temperatures resulted in better solubility. At 4° C, solubility increased a 45 % compared to room temperature experiments (Table 1), achieving comparable results to the literature.

⁵ Duan, Z., & Sun, R. (2003). An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 193(3-4), 257–271.

NEFERTITI – D1.2 – Report on conditioning and CO₂ solubilization in water

Essay	Temperature (°C)	Concentration (M)
Control	25	0,0478
1	8	0,0638
2	4	0,0693
3	4	0,0696

Table 1. Solubility data at different temperatures

Temperature played a key role to increase CO_2 solubility but had to be combined with other parameters to achieve the solubility goals. Moreover, pressure is described⁴ as the most influencing parameter for CO_2 solubility. Results around 1 M concentration have been described at 50 bar pressure and room temperature (Figure 6).

Therefore, several experiments were performed at different pressure values, going from 1 bar up to 50 bar (Table 2) at room temperature. Although many experiments were performed, only few of them could be successfully carried out due to the loss of CO_2 in the sample collecting process, especially the ones performed at high pressure.

Essay	Pressure (bar)	Concentration (M)	
Control	1	0,0478	
1	10	0,1030	
2	20	0,1704	
3	40	0,3619	

Table 2. Solubility data at different pressures

Despite increasing the solubility, results were not comparable to the literature (Figure 6). Therefore, experiments applying optimal conditions in terms of pressure and temperature were performed (Table 3) to see the length of the solubility tests, achieving a CO_2 concentration of 0.83 M in the best attempt, reaching in this case the goal of the task.

Essay	Pressure (bar)	Temperature (°C)	Concentration (M)
Control	1	25	0,0515
1	50	4	0,8264

Table 3. Solubility data at optimal conditions

In conclusion, pressure and temperature were able to enhance CO_2 solubility. Further tests using flow chemistry and compatible pressure conditions with the reactor setup are detailed in chapter 2.2.

2.1.4 Ionic liquids

Ionic liquids (IL) were described⁶ as CO_2 solubility enhancers in water. Higher amounts of solubilized CO_2 were supposed to obtain in pure IL. Since water was needed to be the larger phase, diluted IL were used.

Among all IL, 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM) was the IL selected to perform the experiments. As shown in Table 4, two different BMIM concentrations were used (BMIM 1 M and 0,1 M). The experiments were performed at room temperature and atmospheric pressure.

Essay	IL (M)	Concentration (M)
Control	0	0,0524
1	0,1	0,0542
2	1	0,1079

Table 4. Solubility data with different IL concentration

Ionic liquids had a huge impact in high concentration. Even though, concentrations above 0.1 M are too high to perform the syngas formation reaction and will conclude in further purification problems.

2.1.5 Salting in effect

As reported in literature,⁷ adding certain salts could enhance CO₂ solubility. Sodium chloride and potassium bicarbonate were selected to improve solubility. As shown in (Figure 7), the bicarbonate favours the equilibrium of water and CO₂ to carbonic acid.

⁷ Al-Anezi, K., Somerfield, C., Mee, D., & Hilal, N. (2008). Parameters affecting the solubility of carbon dioxide in seawater at the conditions encountered in MSF desalination plants. Desalination, 222(1-3), 548–571.

⁶ Yang, D., Zhu, Q., & Han, B. (2020). Electroreduction of CO2 in Ionic Liquid-Based Electrolytes. The Innovation, 1(1), 100016.

Figure 7. CO_2 an HCO_3^- equilibrium

Although bicarbonate increases the amount of captured CO_2 , when the solution pH is too basic, the CO_2 becomes unreactive so, a small amount of bicarbonate must be used. First, sodium chloride 0,1 M was tested as solubility enhancer.

Essay	NaCl (M)	Concentration (M)	
Control	0	0,0533	
1	0,1	0,0511	

Table 5. Solubility data with different NaCl concentration

As seen in Table 5, results with NaCl were similar and even a little worse than the control so, NaCl was discarded for further experiments.

The same process was applied for $KHCO_3$ 0,1 M. In this case, the pH of this solution was 8,6 compared to 6,3 of MiliQ water.

Essay	KHCO₃ (M)	Concentration (M)	
Control	0	0,0558	
1	0,1	0,0587	

Table 6. Solubility data with different KHCO₃ concentration

As shown in Table 6. Solubility data with different $KHCO_3$ concentration, $KHCO_3$ resulted in a small increase of CO_2 solubility. Thus, both salts were discarded for further experiments.

VEFERT

NEFERTITI – D1.2 – Report on conditioning and CO₂ solubilization in water

2.2 Solubility experiments in flow

All the information collected from the batch experiments was used to discard the techniques with lower or non relevant results and to emphasize and improve the most promising ones.

2.2.1 General procedure

As the main goal of the project was to use the power of flow chemistry to develop an integrated system capable of transforming CO_2 and water into fuels, the solubilization process of CO_2 was adapted to flow chemistry. Moreover, continuous flow CO_2 solubilization provided many different possibilities to achieve the desired KPI.

In a general set-up, water was pumped through the system and simultaneously, CO_2 was added from the commercial cylinder using a mass flow controller (MFC) to monitor the amount of gas added. Both phases got mixed in a glass microreactor and went through the continuous separator (Zaiput). This device was needed to get rid of the non-solubilized CO_2 from the aqueous phase⁸, to only measure the CO_2 that was solubilized. This aqueous phase was then directly mixed with sodium hydroxide and went through another glass microreactor to ensure the complete CO_2 trapping as carbonate species. The mixture was collected to measure the amount of CO_2 solubilized by titration, following the same method that was used in batch experiments.

For pressure needed experiments, two back pressure regulators (BPR) were placed in both system outcomes, one on the Zaiput gas phase output and the other at the liquid phase output.

Figure 8. Flow system for solubility experiments

* * * * * * * * *

⁸ Zhang, J., Teixeira, A. R., Kögl, L. T., Yang, L., & Jensen, K. F. (2017). Hydrodynamics of gas-liquid flow in micropacked beds: Pressure drop, liquid holdup, and two-phase model. AIChE Journal, 63(10), 4694–4704.

NEFERTITI – D1.2 – Report on conditioning and CO₂ solubilization in water

To obtain better results, an excess of CO_2 was required. Hereby, the flow rate ratio was set between 1/1 to 1/4 (water/ CO_2) achieving the best results as the CO_2 ratio increased. Higher ratios were avoided due to less homogeneous mixture and phase separation problems so, 0,5 mL/min of water and 2 mL/min of CO_2 were set as standard conditions.

Figure 9. Ceramic membrane

As described in the proposal, a ceramic membrane was used to facilitate the permeation of CO₂ into the water stream and improve the solubility. The cylindrical membrane was placed concentrically inside a stainless steel tube as seen in **iError! No se encuentra el origen de la referencia.** Figure 9, before getting into the glass microreactor. Specifically, the gas is pumped through the ceramic membrane and permeates into the water phase throughout the tube, increasing the solubility.

2.2.2 Pressurizing CO₂ in flow reactors

As shown in Figure 8, two back pressure regulators (BPR) were placed in both system outcomes trying to enhance the amount of solubilized CO₂. Since the flow system could not reach as high pressures as used in batch experiments, 10 bar was set as the maximum working pressure because the Zaiput separator could not endure harder pressure conditions.

Different problems arose when pressure was applied regarding the correct separation of the excess of CO_2 and the constant maintenance of the flow rate. Experiments were performed directly at 4 °C changing the CO_2 flow rate to find the optimal conditions (Table 7).

NEFERTITI - D1.2 - Report on conditioning and CO₂ solubilization in water

Essay	Flow rate H ₂ O/CO ₂ (mL/min)	Pressure (bar)	Concentration (M)
Control	0.5/2	1	0,0468
1	0.5/7	5	0,1422
2	0.5/14	10	0,1804

Table 7. Solubility experiments at different pressures in flow

An improvement of solubility results in flow against the batch results could be seen comparing Table 2 with Table 7. Even though, the results were still far from the literature.

Since the results were not good enough at those conditions, two more experiments were performed without removing the excess of non-solubilized CO_2 to see the maximum amount of CO_2 that could be ideally captured if either the aqueous CO_2 or gas CO_2 could be used to obtain syngas (Table 8).

Essay	Flow rate H2O/CO2 (mL/min)	Pressure (bar)	Concentration (M)
1	0.5/7	5	0,7227
2	0.5/14	10	1,4686

Table 8. Solubility experiments at different pressures in flow using a biphasic system

In both cases, all the CO_2 added, including the excess, got trapped by NaOH. As reported before, this experiments were performed to see the maximum amount of CO_2 that could react using this flow rates if both, gas and liquid CO_2 transformations into syngas were feasible.

2.2.3 CO2 nanobubbles

Nanobubbles emerged as an alternative method to increase the solution lifetime and the gas solubility, increasing, in some cases, 30 times more the gas solubility.⁹ It was

⁹ Patel, A. K., Singhania, R. R., Chen, C. W., Tseng, Y. S., Kuo, C. H., Wu, C. H., & Di Dong, C. (2021). Environmental Technology & Innovation, 23, 101729.

reported that by using this methodology, the CO2 solubility increased 15% (0.039 M at 1 bar, r.t.),¹⁰ and when 4 bar was applied, it could rise to 40% (0.048M, r.t.).¹¹

According to all the parameters shown in Figure 10 Figure 10 such as the reactor design, reactor flux (0.1 mL min⁻¹), rate of carbon source (R(Csource)), the change in the Gibbs free energy that accompanies the CO₂ photoreduction to CO ($\Delta G^{\circ} = 64.1$ \times 10³ J mol⁻¹), the energy intensity of the solar light irradiation (P = 0.1 W cm⁻²) and the irradiation area (S = 12.5 cm^2),¹² the CO₂ solubility and therefore the solarto-CO efficiency (n(%)) could be calculated.

 $n (\%)_{max} = \frac{R(C_{source})(\Delta G^{\circ})}{(P)(S)} (100)$

Figure 10. Equation to calculate solar-to-CO efficiency.

Nevertheless, the significant increase of solubility is not enough for achieving the proposed KPI, 5% solar-to-CO efficiency (iError! No se encuentra el origen de la referencia.), so nanobubbles were discarded for this purpose.

Process	Conditions	CO ₂ solubility (M)	R (C _{source}) (mol s ⁻¹)	n (%) _{max}
Ambient	r.t., 1 bar	0.034		0.29
Nanobubbles	r.t., 1 bar	0.039		0.33
Nanobubbles	r.t., 1 bar	0.048		0.41
Goal		0.585	9.75 x 10 ⁻⁷	5.00

Table 9. Theoretical CO₂ solubilities using nanobubbles

3 Conclusions

Although several experiments and techniques were attempted for CO₂ solubility in water stream, solubility goals using working flow conditions were not achieved in aqueous phase in order to obtain the 5 % solar-to-CO efficiency. To reach the proposed theoretical solar-to-CO efficiency in a liquid-phase reaction, the CO2 solubility should be increased to around 0.6 M using no more than 20 bar due to the reactor specifications.

¹² Jiao, X., Li, X., Jin, X., Sun, Y., Xu, J., Liang, L., Ju, H., Zhu, J., Pan, Y., Yan, W. & Lin, Y. (2017). Journal of the American Chemical Society, 139(49), 18044-18051

not liable for any use that may be made of the information contained therein.

¹⁰ Zhou, Y., Han, Z., He, C., Feng, Q., Wang, K., Wang, Y., Luo, N., Dodbiba, G., Wei, Y., Otsuki, A. & Fujita, T., (2021). Materials, 14(7), 1808.

¹¹ Phan, K. K. T., Truong, T., Wang, Y., & Bhandari, B. (2021). Food Engineering Reviews, 13(1), 3-14.

To the best of our knowledge, there is no more available technology that can achieve this solubility in this speciphic conditions. Therefore, two different options emerge as the best candidates to address the problem. On one hand, with the results obtained in Table 8, the reaction could be carried out in a biphasic system, considering that solubilized and non-solubilized CO_2 will be reactive. On the other hand, the process can be accomplished in gas phase using moist CO_2 , increasing the CO_2/H_2O ratio.¹³ An example of the gas phase proposed set-up is illustrated in Figure 11.

Figure 11. Gas phase set-up used for the photocatalytic CO2 reduction.¹⁴

¹³ Ali, S., Flores, M.C., Razzaq, A., Sorcar, S., Hiragond, C.B., Kim, H.R., Park, Y.H., Hwang, Y., Kim, H.S., Kim, H. & Gong, E.H., (2019). Catalysts, 9(9), 727.

¹⁴ Sorcar, S., Hwang, Y., Grimes, C. A., & In, S. I. (2017). Materials Today, 20(9), 507-515.

